Abstract
Molecular Sternheimer shielding constants, γ, the proportionality constants relating the electric field gradient at a quadrupolar nucleus to an external electric field gradient are usually introduced phenomenologically. In this report, we take a comprehensive view of the sensitivity of the electric field gradient at a nucleus to arbitrary external electrical potentials and we show how the response can be obtained from analytically determined properties via derivative Hartree–Fock theory. From application of this ab initio technique, values have been obtained for the first and second order changes in nuclear quadrupole coupling with respect to external fields and field gradients, as well as nearby ideal multipole moments, for HCN and HCl. These values have been used to evaluate the change in the nuclear quadrupole coupling for several weakly bound complexes and to provide a nonempirical approach to relative effects on Sternheimer shielding. In weak molecular complexes, the effect of uniform fields can be as sizable as the effect of external field gradients in the overall change in nuclear quadrupole coupling, and so the underlying issue of convergence of multipolar expansions is considered over a range of geometries. This is important for structural interpretations of both nuclear magnetic resonance (NMR) and microwave data, and a simple formula, representing a practical point of truncation, is presented for quadrupole coupling analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.