Abstract

Abstract In this paper, we deal with nonlinear ill-posed operator equations involving a monotone operator in the setting of Hilbert scales. Our convergence analysis of the proposed derivative-free method is based on the simple property of the norm of a self-adjoint operator. Using a general Hölder-type source condition, we obtain an optimal order error estimate. Also we consider the adaptive parameter choice strategy proposed by Pereverzev and Schock (2005) for choosing the regularization parameter. Finally, we applied the proposed method to the parameter identification problem in an elliptic PDE in the setting of Hilbert scales and compare the results with the corresponding method in Hilbert space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.