Abstract
We consider optimization problems that arise when estimating a set of unknown parameters from experimental data, particularly in the context of nuclear density functional theory. We examine the cost of not having derivatives of these functionals with respect to the parameters. We show that the POUNDERS code for local derivative-free optimization obtains consistent solutions on a variety of computationally expensive energy density functional calibration problems. We also provide a primer on the operation of the POUNDERS software in the Toolkit for advanced optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics G: Nuclear and Particle Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.