Abstract
Augmented Lagrangian methods for derivative-free continuous optimization with constraints are introduced in this paper. The algorithms inherit the convergence results obtained by Andreani, Birgin, Martinez and Schuverdt for the case in which analytic derivatives exist and are available. In particular, feasible limit points satisfy KKT conditions under the Constant Positive Linear Dependence (CPLD) constraint qualification. The form of our main algorithm allows us to employ well established derivative-free subalgorithms for solving lower-level constrained subproblems. Numerical experiments are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.