Abstract

The construction of derivative-free iterative methods for approximating multiple roots of a nonlinear equation is a relatively new line of research. This paper presents a novel family of one-parameter second-order techniques. Our schemes are free from derivatives and have been designed to find multiple roots (m≥2). The new techniques involve the weight function approach. The convergence analysis for the new family is presented in the main theorem. In addition, some special cases of the new class are discussed. We also illustrate the applicability of our methods on van der Waals, Planck’s radiation, root clustering, and eigenvalue problems. We also contrast them with the known methods. Finally, the dynamical study of iterative schemes also provides a good overview of their stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.