Abstract

In the modern theory of finance, the valuation of derivative assets is commonly based on a replication argument. When there are transaction costs, this argument is no longer valid. In this paper, we try to address the general problem of finding the optimal portfolio among those which dominate a given derivative asset at maturity. We derive an interval for its price. the upper bound is the minimum amount one has to invest initially in order to obtain proceeds at least as valuable as the derivative asset. the lower bound is the maximum amount one can borrow initially against the proceeds of the derivative asset. We show that, in some instances, this interval may be strictly bounded above by the price of the replicating strategy. Prima facie, the cost of a dominating strategy should appear to be higher than that of the replicating one. But because trading is costly, it may pay to weigh the benefits of replication against those of potential savings on transaction costs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.