Abstract

LetA be a commutativeAW*-algebra.We denote by S(A) the *-algebra of measurable operators that are affiliated with A. For an ideal I in A, let s(I) denote the support of I. Let Y be a solid linear subspace in S(A). We find necessary and sufficient conditions for existence of nonzero band preserving derivations from I to Y. We prove that no nonzero band preserving derivation from I to Y exists if either Y ⊂ Aor Y is a quasi-normed solid space. We also show that a nonzero band preserving derivation from I to S(A) exists if and only if the boolean algebra of projections in the AW*-algebra s(I)A is not σ-distributive.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.