Abstract

This paper classifies the derivations of group algebras in terms of the generators and defining relations of the group. If RG is a group ring, where R is commutative and S is a set of generators of G then necessary and sufficient conditions on a map from S to RG are established, such that the map can be extended to an R-derivation of RG. Derivations are shown to be trivial for semisimple group algebras of abelian groups. The derivations of finite group algebras are constructed and listed in the commutative case and in the case of dihedral groups. In the dihedral case, the inner derivations are also classified. Lastly, these results are applied to construct well known binary codes as images of derivations of group algebras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.