Abstract
The goal of this article is to introduce a concept of Clifford structures on vector bundles as natural extensions of the standard complex and quaternionic structures, and to determine the derivations and linear connections on smooth Clifford vector bundles compatible with their Clifford structures. The basic object used to get such descriptions is an involution on the space of derivations of a Clifford vector bundle explicitly defined in terms of the specific Clifford structure. That involution is actually derived from an operation called the Clifford conjugation relative to a Clifford structure, which is defined in a purely algebraic setting as an involution on the space of derivations of a Euclidean Clifford algebra. Its definition essentially relies on the use and a complete description of the geometric concept of tangent Clifford structures of a Euclidean Clifford algebra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.