Abstract

The neurometabolic disorder known as biotin-thiamine-responsive basal ganglia disease (BTBGD) is a rare autosomal recessive condition linked to bi-allelic pathogenic mutations in the SLC19A3 gene. BTBGD is characterized by progressive encephalopathy, confusion, seizures, dysarthria, dystonia, and severe disabilities. Diagnosis is difficult due to the disease’s rare nature and diverse clinical characteristics. The primary treatment for BTBGD at this time is thiamine and biotin supplementation, while its long-term effectiveness is still being investigated. In this study, we have generated two clones of induced pluripotent stem cells (iPSCs) from a 10-year-old female BTBGD patient carrying a homozygous mutation for the pathogenic variant in exon 5 of the SLC19A3 gene, c.1264A > G (p.Thr422Ala). We have confirmed the pluripotency of the generated iPS lines and successfully differentiated them to neural progenitors. Because our understanding of genotype–phenotype correlations in BTBGD is limited, the establishment of BTBGD-iPSC lines with a homozygous SLC19A3 mutation provides a valuable cellular model to explore the molecular mechanisms underlying SLC19A3-associated cellular dysfunction. This model holds potential for advancing the development of novel therapeutic strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.