Abstract

In this work we present a general derivation of relativistic fluid dynamics from the Boltzmann equation using the method of moments. The main difference between our approach and the traditional 14-moment approximation is that we will not close the fluid-dynamical equations of motion by truncating the expansion of the distribution function. Instead, we keep all terms in the moment expansion. The reduction of the degrees of freedom is done by identifying the microscopic time scales of the Boltzmann equation and considering only the slowest ones. In addition, the equations of motion for the dissipative quantities are truncated according to a systematic power-counting scheme in Knudsen and inverse Reynolds number. We conclude that the equations of motion can be closed in terms of only 14 dynamical variables, as long as we only keep terms of second order in Knudsen and/or inverse Reynolds number. We show that, even though the equations of motion are closed in terms of these 14 fields, the transport coefficients carry information about all the moments of the distribution function. In this way, we can show that the particle-diffusion and shear-viscosity coefficients agree with the values given by the Chapman-Enskog expansion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.