Abstract

Kazemi et al. (SPE Reserv Eng 7(2):219–227, 1992) suggested an empirical matrix-fracture transfer function, verified based on experimental data of Mattax and Kyte (Trans AIME 225(15):177–184, 1962), to model fluid flow in naturally fractured dual porosity petroleum reservoirs using a dual-porosity numerical simulator. Their generalized shape factor should be valid for all possible irregular matrix blocks. The factor is calculated based on the volume of the matrix block, the surface open to flow in all directions and the distances of these surfaces to the centre of the matrix block. The summation is done over all open surfaces of a matrix block. Kazemi et al. (1992) showed that for rectangles and cylinders the formula reduces to the well-known forms of the shape factor. By the time, many authors indicated the validity of the formula, but no theoretical proof was offered for that so far. This study derives the Kazemi et al. (1992) shape factor using control volume finite difference discretization on the fracture-matrix dual continuum. The matrix blocks are handled as Voronoi polyhedra. The derivation is given for both isotropic and tensorial matrix permeability. Based on this derivation the authors conclude that the Kazemi et al. (SPE Reserv Eng 7(2):219–227, 1992) formula is exact under pseudo-steady-state conditions within the dual continuum mathematical concept of natural fractured dual porosity systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call