Abstract

ABSTRACT The renormalisation group theory of critical and tri-critical wetting transitions in three-dimensional systems with short-ranged forces, based on analysis of an effective Hamiltonian with an interfacial binding potential , predicts very strong non-universal critical singularities. These, however, have famously not been observed in extensive Monte Carlo simulations of the transitions in the simple cubic Ising model. Here, we show that previous treatments have missed an entropic, or low-temperature Casimir, contribution to the binding potential, arising from the many different microscopic configurations which correspond to a given interfacial one. We derive the full binding potential, including the Casimir correction term, starting from a microscopic Landau–Ginzburg–Wilson Hamiltonian, using a continuum transfer-matrix (path-integral) method. This is illustrated first in one dimension before generalising to arbitrary dimension. The Casimir contribution is qualitatively different for first-order, critical and tri-critical wetting transitions and substantially alters previous predictions for critical singularities bringing them much closer to the simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.