Abstract

We study the dynamics of a Brownian quantum particle hopping on an infinite lattice with a spin degree of freedom. This particle is coupled to free boson gases via a translation-invariant Hamiltonian which is linear in the creation and annihilation operators of the bosons. We derive the time evolution of the reduced density matrix of the particle in the van Hove limit in which we also rescale the hopping rate. This corresponds to a situation in which both the system-bath interactions and the hopping between neighboring sites are small and they are effective on the same time scale. The reduced evolution is given by a translation-invariant Lindblad master equation which is derived explicitly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.