Abstract

The established radiation quality parameters in mixed neutron-gamma radiation fields may be measured by applying the initial (columnar) recombination of ions in tissue-equivalent (TE) high-pressure ionization chambers (recombination chambers). The mean quality factor can be determined to within 10-15% for mixed fields with neutrons ranging from thermal to 10 MeV, and the dose mean LET of the proton component can be determined to within 10-15% if the gamma-ray absorbed dose fraction is known. These average parameters are derived by measuring the ratio of the ionization currents collected at two high-field strengths and constant gas pressure applied to the ionization chamber. By utilizing approximate correlations between physical parameters in the neutron energy region from thermal to 10 MeV, the dose mean LET of the heavy ion component, the overall dose mean LET, and the microdosimetric parameter y0,D of the mixed field can also be derived. Experimental verification of the method is presented for various neutron-gamma radiation spectra in air and in water by comparison to theoretical calculations and results from low-pressure proportional counter measurements. Good agreement is shown. The TE high-pressure ionization chamber appears to have wide potential for use as a dose-equivalent meter in radiation protection or as a beam characterization device in radiobiology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call