Abstract

Key questions for theory of high temperature superconductors involve the nature of the electronic system: the minimum essential Hamiltonian and the low energy states of such Hamiltonians. To attempt to answer these questions we are carrying out studies using constrained density functional (CDF) methods to identify the relevant electronic states and realistic values of the parameters, combined with exact calculations on the reduced model Hamiltonians. The CDF calculations lead to a 3-band Hubbard model for Cu-O planes with parameters in general agreement with high energy spectroscopies and low energy magnetic excitations. We describe a modified Lanczos method to carry out large many-body calculations and give a representative result, where we find the spectra are described by the 1-band Hubbard model in regimes which imply spin interactions beyond the usual Heisenberg form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.