Abstract

The derivation of mean-square displacements from elastic incoherent neutron scattering (EINS) of proteins is examined, with the aid of experiments on camphor-bound cytochrome P450cam and complementary molecular dynamics simulations. It is shown that a q(4) correction to the elastic incoherent structure factor (where q is the scattering vector) can be simply used to reliably estimate from the experiment both the average mean-square atomic displacement, <Δr(2)> of the nonexchanged hydrogen atoms in the protein and its variance, σ(2). The molecular dynamics simulation results are in broad agreement with the experimentally derived <Δr(2)> and σ(2) derived from EINS on instruments at two different energy resolutions, corresponding to dynamics on the ∼100 ps and ∼1 ns time scales. Significant dynamical heterogeneity is found to arise from methyl-group rotations. The easy-to-apply q(4) correction extends the information extracted from elastic incoherent neutron scattering experiments and should be of wide applicability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.