Abstract
New ligand additivity equations, based on the Bursten model, describing dπ orbital energies in square-planar and square–pyramidal complexes are proposed and tested for hypothetical binary Cr(0) and Mn(I) complexes of CO and CNMe. Density functional theory calculations are used to calculate the energies of dπ orbitals of binary octahedral, square–planar, and square–pyramidal d6 complexes of Mn(I) and Cr(0). Combination of the modified equations for unsaturated species with Bursten’s original equations for octahedral species allows for calculation of individual ligand bonding parameters and the separation of σ- and π-bonding effects. The calculated parameters provide interesting insight into the nature of metal–ligand bonding in the species studied. The method of separating σ- and π-bonding effects, applied here to CO and CNMe, is proposed as general method for solution of the Bursten equations for low-spin d6 octahedral systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.