Abstract
Abstract The phenomenological aspects of surface and interfacial phenomena such as wetting phase transitions are commonly studied using the classification scheme provided by the Landau theory. Although this approach is very meaningful, it is also important to establish a firm connection between the phenomenology and the microscopic models of statistical mechanics. This is true, especially in view of the remarkable sensitivity of wetting phenomena to the details of the substrate-adsorbate interactions. We study such connections and derive a variety of lattice mean-field theories, which make a bridge between the Landau theory and the semi-infinite Ising model with a surface. We discuss standard mean-field approximations (MFA) and improvements thereof, renormalization group techniques, reaction-field approximations, and cluster variation methods. We pay special attention to the derivation of the newly introduced triplet surface field h 3 in the Landau theory for wetting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.