Abstract
CD8 + cells from healthy, asymptomatic HIV-1-infected individuals can inhibit HIV-1 replication in naturally or acutely infected CD4 + cells in the absence of cell killing. This CD8 + cell noncytotoxic anti-HIV response (CNAR) is mediated by a soluble CD8 + cell antiviral factor (CAF). CNAR/CAF inhibits HIV-1 replication by blocking viral RNA transcription. HIV transcription is regulated by a variety of cis-acting DNA sequence elements within the proviral long terminal repeat (LTR). We hypothesized that one of the HIV-1 LTR proviral DNA sequence elements that binds host cell transcriptional factors is involved in this antiviral activity. To assess this possibility, we constructed full-length infectious HIV-1 molecular clones with mutations in the LTR elements NFAT, AP-1, IL-2 homology region, and the downstream ISRE. We also tested full-length infectious molecular clones that had deletions of either the NF-κB or Sp1 sites of the LTR or lacked functional Tat and TAR elements. Viruses generated from these molecular clones were used to acutely infect CD4 + cells that subsequently were either co-cultured with CD8 + cells from individuals that exhibited strong CNAR or cultured with CAF-containing fluids. The replication of all of the mutant HIV-1 viruses tested was substantially reduced in the presence of CNAR/CAF. These findings suggest that other regions in the viral LTR or other host cell processes are involved in the transcriptional block elicited by CNAR/CAF.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.