Abstract
Genomic estimated breeding values (GEBV) of animals without phenotypes can be indirectly predicted using recursions on GEBV of a subset. To maximize predictive ability of indirect predictions (IP), the subset must represent the independent chromosome segments segregating in the population. We aimed to 1) determine the number of animals needed in recursions to maximize predictive ability, 2) evaluate equivalency IP-GEBV, and 3) investigate trends in predictive ability of IP derived from recent vs. distant generations or accumulating phenotypes from recent to past generations. Data comprised pedigree of 825K birds hatched over 12 overlapping generations, phenotypes for body weight (BW; 820K), residual feed intake (RF; 200K) and weight gain during a trial period (WG; 200K), and breast meat percent (BP; 43K). A total of 154K birds (last six generations) had genotypes. The number of animals that maximize predictive ability was assessed based on the number of largest eigenvalues explaining 99% of variation in the genomic relationship matrix (1Me = 7,131), twice (2Me), or a fraction of this number (i.e., 0.75, 0.50, or 0.25Me). Equivalency between IP and GEBV was measured by correlating these two sets of predictions. GEBV were obtained as if generation 12 (validation animals) was part of the evaluation. IP were derived from GEBV of animals from generations 8 to 11 or generations 11, 10, 9, or 8. IP predictive ability was defined as the correlation between IP and adjusted phenotypes. The IP predictive ability increased from 0.25Me to 1Me (11%, on average); the change from 1Me to 2Me was negligible (0.6%). The correlation IP-GEBV was the same when IP were derived from a subset of 1Me animals chosen randomly across generations (8 to 11) or from generation 11 (0.98 for BW, 0.99 for RF, WG, and BP). A marginal decline in the correlation was observed when IP were based on GEBV of animals from generation 8 (0.95 for BW, 0.98 for RF, WG, and BP). Predictive ability had a similar trend; from generation 11 to 8, it changed from 0.32 to 0.31 for BW, from 0.39 to 0.38 for BP, and was constant at 0.33(0.22) for RF(WG). Predictive ability had a slight to moderate increase accumulating up to four generations of phenotypes. 1Me animals provide accurate IP, equivalent to GEBV. A minimum decay in predictive ability is observed when IP are derived from GEBV of animals from four generations back, possibly because of strong selection or the model not being completely additive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.