Abstract

Motivated by recent experimental efforts, we study a black hole analog induced by the propagation of a strong laser pulse in a nonlinear dielectric medium. Based on the Hopfield model (one pair of Sellmeier coefficients), we perform an analytic and fully relativistic microscopic derivation of the analog of Hawking radiation in this setup. The Hawking temperature is determined by the analog of the surface gravity (as expected), but we also find a frequency-dependent gray-body factor (i.e., a nonthermal spectrum at infinity) due to the breaking of conformal invariance in this setup.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.