Abstract
The computation-time delay in the feedback controller of a real-time control system may cause failure to update the control input during one or more sampling periods. A dynamic failure is said to occur if this delay exceeds a certain limit called a hard deadline. We present a method for calculating the hard deadlines in linear time-invariant control systems. To derive necessary conditions for (asymptotic) system stability, the state difference equation is modified based on an assumed maximum delay and the probability distribution of delays whose magnitudes are less than, or equal to, the assumed maximum delay. Moreover, the allowed state-space - which is derived from given input and state constraints - is used to calculate the hard deadline as a function of time and the system state. We also consider a one-shot delay model in which a single event causes a dynamic failure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.