Abstract

Designing a humanoid robot is a complex issue and the exact resemblance of human arm movements has not been achieved in many of the previously developed robots. This paper is going to be much focused on the design of a humanoid robot arm which has a unique approach which has never been developed earlier. Even though all the robots that have been developed using 6-Degrees of Freedom (DOF) and 7-DOF can reach any point in the space, some of the orientation cannot be reached by the end effector plane effectively. So an 8-DOF freedom based robotic arm has been specially designed and developed to resemble the exact movements of the human being. This robot has 3-DOF for shoulder joint, 2-DOF for the elbow joint, and 3-DOF for the wrist with fingers as the end effector. Almost all the robots have only 1-DOF to the elbow joint but here 2-DOF has been proposed to resemble the exact movements of the human being (2-DOF at elbow) to solve the above mentioned problem. Literature reviews and design model are discussed in detail to support the proposal that has been made. Forward and inverse Kinematic relationships are also obtained for the joint link parameter. This humanoid robot arm which has been designed and developed is one of the modules of a human size humanoid robot RALA (Robot based on Autonomous Learning Algorithm).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call