Abstract
This paper derives the elements of classical Einstein–Cartan theory (EC) from classical general relativity (GR) in two ways. (I) Derive discrete versions of torsion (translational holonomy) and the spin-torsion field equation of EC from one Kerr solution in GR. (II) Derive the field equations of EC as the continuum limit of a distribution of many Kerr masses in classical GR. The convergence computations employ “epsilon-delta” arguments, and are not as rigorous as convergence in Sobolev norm. Inequality constraints needed for convergence restrict the limits from continuing to an infinitesimal length scale. EC enables modeling exchange of intrinsic and orbital angular momentum, which GR cannot do. Derivation of EC from GR strengthens the case for EC and for new physics derived from EC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Geometric Methods in Modern Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.