Abstract

Program specialization is a program transformation methodology which improves program efficiency by exploiting the information about the input data which are available at compile time. We show that current techniques for program specialization based on partial evaluation do not perform well on nondeterministic logic programs. We then consider a set of transformation rules which extend the ones used for partial evaluation, and we propose a strategy for guiding the application of these extended rules so to derive very efficient specialized programs. The efficiency improvements which sometimes are exponential, are due to the reduction of nondeterminism and to the fact that the computations which are performed by the initial programs in different branches of the computation trees, are performed by the specialized programs within single branches. In order to reduce nondeterminism we also make use of mode information for guiding the unfolding process. To exemplify our technique, we show that we can automatically derive very efficient matching programs and parsers for regular languages. The derivations we have performed could not have been done by previously known partial evaluation techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.