Abstract
A description is given of a relatively simple derivation of the bit-error probability for a lightwave communications system using an amplitude-shift-keying (ASK) pulse modulation format and employing optical amplifiers such that amplified spontaneous emission noise dominates all other noise sources. Mathematically, this noise is represented as a Fourier series expansion with Fourier coefficients that are assumed to be independent Gaussian random variables. The bit-error probability is given in a closed analytical form that is derived by the approximate evaluation of several integrals appearing in the analysis. The author uses the theory to derive the Gaussian approximation and finds that it overestimates the bit-error rate by one to two orders of magnitude.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.