Abstract
We present an effort to model the pressure loss together with the heat transfer mechanism, in a heat exchanger designed for an integrated recuperative aero engine. The operation of the heat exchanger is focusing on the exploitation of the thermal energy of the turbine exhaust gas to pre-heat the compressor outlet air before combustion and to decrease fuel consumption and pollutant emissions. Two basic parameters characterize the operation of the heat exchanger, the pressure loss and the heat transfer. The derivation of the pressure loss model is based on experimental measurements that have been carried-out on a heat exchanger model. The presence of the heat exchanger is modeled using the concept of a porous medium, in order to facilitate the computational modeling by means of CFD. As a result, inside the integrated aero engine, the operation of the heat exchanger can be sufficiently modeled as long as a generalized and accurate pressure drop and heat transfer model is developed. Hence, the porosity model formulation should be capable of properly describing the overall macroscopic hydraulic and thermal behavior of the heat exchanger. The effect of the presence of the heat exchanger on the flow field is estimated from experimental measurements. For the derivation of the porous medium pressure loss model, an anisotropic formulation of a modified Darcy-Forchheimer pressure drop law is proposed in order to take into account the effects of the three-dimensional flow development through the heat exchanger. The heat transfer effects are taken also into account with the use of a heat transfer coefficient correlation. The porosity model is adopted by the CFD solver as an additional source term. The validation of the proposed model is performed through CFD computations, by comparing the predicted pressure drop and heat transfer with available experimental measurements carried-out on the heat exchanger model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.