Abstract

A new model of the thin viscous fluid film, constrained between two translating, flexible surfaces, is presented in this paper: The unsteady inertia of the film is included in the model. The derivation starts with the reduced three-dimensional Navier-Stokes equations for an incompressible viscous fluid with a small Reynolds number. By introduction of an approximate velocity field, which satisfies the continuity equation and the no-slip boundary conditions exactly, into weighted integrals of the three-dimensional equations over the film thickness, a two-dimensional thin film equation is obtained explicitly in a closed form. The 1th thin film equation is obtained when the velocity field is approximated by 21th order polynominals, and the three-dimensional viscous film is described with increasing accuracy by thin film equations of increasing order. Two cases are used to illustrate the coupling of the film to the vibration of the structure and to show that the second thin film equation can be applied successfully to the prediction of a coupled film-structure response in the range of most applications. A reduced thin film equation is derived through approximation of the second thin film equation that relates the film pressure to transverse accelerations and velocities, and to slopes and slope rates of the two translating surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.