Abstract

Banded waveguide (BWG) synthesis is an efficient method for real-time physical modeling of dispersive and multidimensional sounding objects, affording simulation of complex interactions, such as bowing. Current implementations, however, use nonphysical design parameters and produce a range of outputs that do not match equivalently designed modal and digital waveguide (DWG) models. This letter proposes a new topology for implementing BWG models without arbitrary parameters. The impulse response of the proposed model is identical to that of equivalent Karplus-Strong type and lumped modal models. Test of a nonlinear bi-directional bowed-string model demonstrates improved attack characteristics relative to prior BWG models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.