Abstract

In this paper, we derive analytically from first principles a generalized Fowler–Nordheim (FN) type equation that takes into account the curvature of a nanoscopic emitter and is generally applicable to any emitter shape provided that the emitter is a good conductor and no field-dependent changes in emitter geometry occur. The traditional FN equation is shown to be a limiting case of our equation in the limit of emitters of large radii of curvature R. Experimental confirmation of the validity of our equation is given by the data of three different groups. Upon applying our equation to experimental FN plots complying with the above limitations, one may deduce (i) R and (ii) standard field emission parameters—e.g. enhancement factor—with better accuracy than by using the FN equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.