Abstract

Considering the rheology of two-dimensional soft suspensions above the jamming density, we derive a tensorial constitutive model from the microscopic particle dynamics. Starting from the equation governing the N-particle distribution, we derive an evolution equation for the stress tensor. This evolution equation is not closed, as it involves the pair and three-particle correlation functions. To close this equation, we first employ the standard Kirkwood closure relation to express the three-particle correlation function in terms of the pair correlation function. Then we use a simple and physically motivated parametrization of the pair correlation function to obtain a closed evolution equation for the stress tensor. The latter is naturally expressed as separate evolution equations for the pressure and for the deviatoric part of the stress tensor. These evolution equations provide us with a non-linear tensorial constitutive model describing the rheological response of a jammed soft suspension to an arbitrary uniform deformation. One of the advantages of this microscopically-rooted description is that the coefficients appearing in the constitutive model are known in terms of packing fraction and microscopic parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.