Abstract

In this paper, we report a series of transformations for the construction of a Hamiltonian model for nonrigid polyatomic molecules in the framework of the Hougen-Bunker-Johns formalism (HBJ). This model is expressed in normal mode coordinates for small vibrations and in a specific coordinate ρ to describe the large amplitude motion. For the first time, a general procedure linking the "true" curvilinear coordinates to ρ is proposed, allowing the expression of the potential energy part in the same coordinate representation as the kinetic energy operator, whatever the number of atoms. A Lie group-based method is also proposed for the derivation of the reference configuration in the internal axis system. This work opens new perspectives for future high-resolution spectroscopy studies of nonrigid, medium-sized molecules using HBJ-type Hamiltonians. Illustrative examples and computation of vibrational energy levels on semirigid and nonrigid molecules are given to validate this method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call