Abstract

Hydrogen plays an important role for the decarbonization of the energy sector. In its gaseous form, it is stored at pressures of up to 1000 bar at which real gas effects become relevant. To capture these effects in numerical simulations, accurate real gas models are required. In this work, new correlation equations for relevant hydrogen properties are developed based on the Reference Fluid Thermodynamic and Transport Properties Database (REFPROP). Within the regarded temperature (150–400 K) and pressure (0.1–1000 bar) range, this approach yields a substantially improved accuracy compared to other data-based correlations. Furthermore, the developed equations are validated in a numerical simulation of a critical flow Venturi nozzle. The results are in much better accordance with experimental data compared to a cubic equation of state model. In addition, the simulation is even slightly faster.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call