Abstract

Hydrogen plays an important role for the decarbonization of the energy sector. In its gaseous form, it is stored at pressures of up to 1000 bar at which real gas effects become relevant. To capture these effects in numerical simulations, accurate real gas models are required. In this work, new correlation equations for relevant hydrogen properties are developed based on the Reference Fluid Thermodynamic and Transport Properties Database (REFPROP). Within the regarded temperature (150–400 K) and pressure (0.1–1000 bar) range, this approach yields a substantially improved accuracy compared to other data-based correlations. Furthermore, the developed equations are validated in a numerical simulation of a critical flow Venturi nozzle. The results are in much better accordance with experimental data compared to a cubic equation of state model. In addition, the simulation is even slightly faster.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.