Abstract

This paper illustrates the application of hybrid modeling and model predictive control techniques to the water purge management in a fuel cell with dead-end anode. The anode water flow dynamics are approximated as a two-mode discrete-time switched affine system that describes the propagation of water inside the gas diffusion layer, the spilling into the channel and consequent filling and plugging the channel. Using this dynamical approximation, a hybrid model predictive controller based on on-line mixed-integer quadratic optimization is tuned, and the effectiveness of the approach is shown through simulations with a high-fidelity model. Then, using an off-line multiparametric optimization procedure, the controller is converted into an equivalent piecewise affine form which is easily implementable even in an embedded controller through a lookup table of affine gains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call