Abstract

We succeeded in the derivation and maintenance of pluripotent embryonic stem (ES) cells from equine and bovine blastocysts. These cells expressed markers that are characteristics of mouse ES cells, namely, alkaline phosphatase, stage-specific embryonic antigen 1, STAT 3 and Oct 4. We confirmed the pluripotential ability of these cells, which were able to undergo somatic differentiation in vitro to neural progenitors and to endothelial or hematopoietic lineages. We were able to use bovine ES cells as a source of nuclei for nuclear transfer and we generated cloned cattle with a higher frequency of pregnancies to term than has been achieved with somatic cells. On the other hand, we established human fetal membrane derived stem cell lines by the colonial cloning techniques using MEMalpha culture medium containing 10 ng/ml of EGF, 10 ng/ml of LIF and 10% fetal bovine serum (FBS). These cells appeared to maintain normal karyotype in vitro and expressed markers characteristics of stem cells. Furthermore, these cells contributed to the formation of chimeric murine embryoid bodies and gave rise to all three germ layers in vitro. Results from animal ES cells and human fetal membrane derived stem cells clearly demonstrate that these cells might be used for providing different types of cells for regenerative medicine as well as used for targeted genetic manipulation of the genome.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call