Abstract

This paper derives a non-linear diffusion equation discussing two possible applications: the ionic diffusion in glasses and temperature-dependent conductivity in semiconductors. The first equation is a logarithmic diffusion derived formally from the continuity of ion concentration, but the latter is a more phenomenological example. A power-law ansatz with time-dependent parameters maximizes a non-standard entropy and gives a set of coupled motion equations we can solve analytically. These results build the general solution to the non-linear diffusion equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.