Abstract
It has been shown that hematopoietic stem cells migrate in vitro and in vivo following the gradient of a chemotactic factor produced by stroma cells. In this paper, a quantitative model for this process is presented. The model consists of chemotaxis equations coupled with an ordinary differential equation on the boundary of the domain and subjected to nonlinear boundary conditions. The existence and uniqueness of a local solution is proved and the model is simulated numerically. It turns out that for adequate parameter ranges, the qualitative behavior of the stem cells observed in the experiment is in good agreement with the numerical results. Our investigations represent a first step in the process of elucidating the mechanism underlying the homing of hematopoietic stem cells quantitatively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.