Abstract

BackgroundAberrantly expressed and constitutively active STAT3 signaling plays a pivotal role in initiation and progression of human papillomavirus-induced cervical carcinogenesis. However, the underlying mechanism(s) responsible for pleiotropic effects of STAT3 signaling is poorly understood. In view of emerging regulatory role of microRNAs, Let-7a and miR-21 that may interact with STAT3 signaling and/or its downstream effectors, present study was designed in HPV16-positive cervical cancer cells to assess the functional contribution of these miRs in STAT3 signaling in cervical cancer.MethodsFunctional silencing of STAT3 signaling and HPV16 oncoprotein expression in SiHa cells was done by STAT3-specific and 16 E6 siRNAs. Pharmacological intervention of STAT3 was done using specific inhibitors like curcumin and stattic. Loss-of-function study of miR-21 using miR-21 inhibitor and gain-of-function study of let-7a was done using let-7a mimic in SiHa cells.ResultsFunctional silencing of STAT3 signaling in SiHa cells by STAT3-specific siRNA resulted in a dose-dependent decrease in cellular miR-21 level. Pharmacological intervention of STAT3 using specific inhibitors like curcumin and Stattic that abrogated STAT3 activation resulted in loss of cellular miR-21 pool. Contrary to this, specific targeting of miR-21 using miR-21 inhibitor resulted in an increased level of PTEN, a negative regulator of STAT3, and reduced active pSTAT3 level. Besides miR-21, restoration of cellular Let-7a using chemically synthesized Let-7a mimic reduced overall STAT3 level. Abrogation of HPV oncoprotein E6 by specific siRNA resulted in increased Let-7a but loss of miR-21 and a correspondingly reduced pSTAT3/STAT3 and elevated the level of cellular PTEN.ConclusionsOur results demonstrate existence of a functional loop involving Let-7a, STAT3 and miR-21 which were found potentially regulated by viral oncoprotein E6. Implications: miR-21 and Let-7a along with STAT3 may prove useful targets for pharmacological intervention for management of cervical cancer.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2407-14-996) contains supplementary material, which is available to authorized users.

Highlights

  • Expressed and constitutively active Signal transducer and activator of transcription (STAT3) signaling plays a pivotal role in initiation and progression of human papillomavirus-induced cervical carcinogenesis

  • In view of emerging regulatory role of microRNAs, Let-7a and mR-21 that may interact with STAT3 signaling and its downstream effectors, present study was designed in HPV16-positive cervical cancer cells to assess the functional contribution of these miRs in STAT3 signaling in cervical cancer

  • Blocking of oncogenic E6 gene expression in cervical cancer cells by E6-specific Small interfering RNAs (siRNA) resulted in an increase in level of Let-7a and corresponding decline in miR-21 which was accompanied by loss of active STAT3 and increase in Phosphatase and tensin homologue (PTEN) in E6-transfected SiHa cells

Read more

Summary

Introduction

Expressed and constitutively active STAT3 signaling plays a pivotal role in initiation and progression of human papillomavirus-induced cervical carcinogenesis. Expressed and constitutively active STAT3 signaling plays a pivotal role in initiation and progression of cervical cancer and controls expression of viral oncogenes, E6 and E7 during cervical carcinogenesis [2,3]. Our recent observation demonstrate a strong association of elevated miR-21 expression with active STAT3 and an inverse correlation with level of Let-7a in tumor tissues from cervical cancer lesions (unpublished data). These observations prompted us to investigate if an active Let-7a-STAT3miR-21 functional signaling loop operates during cervical carcinogenesis

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call