Abstract

The activity of human Cdt1 is negatively regulated by multiple mechanisms. This suggests that Cdt1 deregulation may have a deleterious effect. Indeed, it has been suggested that overexpression of Cdt1 can induce rereplication in cancer cells and that rereplication activates Ataxia-telangiectasia-mutated (ATM) kinase and/or ATM- and Rad3-related (ATR) kinase-dependent checkpoint pathways. In this report, we highlight a new and interesting aspect of Cdt1 deregulation: data from several different systems all strongly indicate that unregulated Cdt1 overexpression at pathophysiological levels can induce chromosomal damage other than rereplication in non-transformed cells. The most important finding in these studies is that deregulated Cdt1 induces chromosomal damage and activation of the ATM-Chk2 DNA damage checkpoint pathway even in quiescent cells. These Cdt1 activities are negatively regulated by cyclin A/Cdks, probably through modification by phosphorylation. Furthermore, we found that deregulated Cdt1 induces chromosomal instability in normal human cells. Since Cdt1 is overexpressed in cancer cells, this would be a new molecular mechanism leading to carcinogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.