Abstract

BackgroundBone metastasis is the most common metastatic destination in advanced breast cancer, presenting a poor prognosis and clinical challenges in management. To date, the mechanism of bone metastasis in breast cancer remains largely unclear. MethodsDifferentially expressed genes in primary tumours that developed bone metastases were systematically analysed using both TCGA-BRCA and E-MTAB-4003 databases. Adaptive phenotype in the subsequent bone lesions was analysed in the GSE46161 database. A series of biomarkers including homing, immune escape, angiogenesis, and factors involved in both osteoblastogenesis and osteoclastogenesis were included to dissect the molecular events underlying bone metastasis in breast cancer. ResultsUpregulated expressions of GDF11 expression is positively correlated with colonization, osteoblastogenesis and osteoclastogenesis, whilst CD151 is positively associated with angiogenesis and immune escape. PAFAH1B2 expression is inversely correlated with the angiogenic process. Reduced YTHDF2 may facilitate cancer cell homing, osteoclastogenesis and immune escape in breast cancer. DPP9, FAS, ZNF519, RPP14 and FAU were evaluated for their potential involvement in for the homing to bone, escaping from immune surveillance, angiogenesis, osteoblastic activity and osteoclastic activity in the multi-step process of bone metastasis. ConclusionGDF11, CD151, PAFAH1B2 and YTHDF2 may play a pivotal role in the predisposition of metastasis to the bone from breast cancer, whilst DPP9, FAS, ZNF519, RPP14 and FAU may be actively involved in the adaptative colonisation of metastatic breast cancer cells in bone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call