Abstract

DNA damage-induced cell death is a major effector mechanism of radiotherapy. Aberrant expression of anti-apoptotic BCL-2 family proteins is frequently observed in lung cancers. Against this background, we studied radioresistance mediated by BCL-2 family proteins at the mechanistic level and its potential as target for radiochemotherapy. Lung cancer models stably expressing BCL-xL or MCL-1 were irradiated to study cell death, clonogenic survival, and DNA repair kinetics invitro, and growth suppression of established tumors invivo. Additionally, endogenous BCL-xL and MCL-1 were targeted by shRNA or pharmacologic agents prior to irradiation. Radiation exposure induced apoptosis at negligible levels. Yet, anti-apoptotic BCL-xL and MCL-1 expression conferred short-term and long-term radioresistance invitro and invivo. Radioresistance correlated with pertubations in homologous recombination repair and repair of DNA double-strand breaks by error-prone, alternative end-joining. Notably, genetic or pharmacologic targeting of BCL-xL or MCL-1 effectively sensitized lung cancer cells to radiotherapy. In addition to directly suppressing apoptosis, BCL-2 family proteins confer long-term survival benefits to irradiated cancer cells associated with utilization of error-prone repair pathways. Targeting BCL-xL and MCL-1 is an attractive strategy for improving lung cancer radiotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.