Abstract

As part of our research into the mechanisms of protein wasting and muscle weakness during critical illness, we here investigate various aspects of energy metabolism. Intraperitoneal injection of zymosan in rats leads to an acute phase of critical illness followed by a prolonged recovery phase. Previously we observed low activities of mitochondrial enzymes, reduced protein synthesis rates and low concentrations of glutamine in skeletal muscle of zymosan-treated rats. In the present study we investigated (1) whether decreases in high energy phosphates are present in skeletal muscle of these rats and (2) whether an impairment in the glycolytic pathway or the tricarboxylic acid cycle leads to these decreases. Concentrations of creatine phosphate and ATP were decreased in zymosan-treated rats to approx. 85% of pair-fed control values respectively on day 2 and on days 4 and 6 after treatment. Concentrations of tricarboxylic acid (TCA) cycle intermediates were decreased to 80% on day 6 after zymosan treatment. Lactate/pyruvate ratio and concentrations of lactate and glycogen were normal at all sampling times. We conclude that no major changes in concentrations of high energy phosphates and in concentrations of intermediates of TCA cycle, glycolysis and glycogenolysis were present. This indicated that, although the maximal oxidative capacity (mitochondrial content) is decreased, no derangement in energy metabolism seems to be present in skeletal muscle of critically ill and recovering rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call