Abstract

Currently, a TCP sender considers all losses as congestion signals and reacts to them by throttling its sending rate. With Internet becoming more heterogeneous with more and more wireless error-prone links, a TCP connection may unduly throttle its sending rate and experience poor performance over paths experiencing random losses unrelated to congestion. The problem of distinguishing congestion losses from random losses is particularly hard when congestion is light: congestion losses themselves appear to be random. The key idea is to de-randomize congestion losses. This paper proposes a simple biased queue management scheme that de-randomizes congestion losses and enables a TCP receiver to diagnose accurately the cause of a loss and inform the TCP sender to react appropriately. Bounds on the accuracy of distinguishing wireless losses and congestion losses are analytically established and validated through simulations. Congestion losses are identified with an accuracy higher than 95% while wireless losses are identified with an accuracy higher than 75%. A closed form is derived for the achievable improvement by TCP endowed with a discriminator with a given accuracy. Simulations confirm this closed form. TCP-Casablanca, a TCP-Newreno endowed with the proposed discriminator at the receiver, yields through simulations an improvement of more than 100% on paths with low levels of congestion and about 1% random wireless packet loss rates. TCP-Ifrane, a sender-based TCP-Casablanca yields encouraging performance improvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.