Abstract

AbstractCatalytic deracemization is an ideal synthetic strategy due to its formally perfect atom utilization. Asymmetric photocatalysis has been appreciated as a promising tool to accomplish this attractive reaction pattern in an economical fashion, but it remains underdeveloped. Here, we report a new platform based on photoredox‐neutral catalysis, allowing efficient and modular optical enrichment of α‐amino esters and other valuable analogues. Two single‐electron transfer processes between the photocatalyst and the substrates serve to provide the key prochiral intermediates, and the chiral Brønsted acid catalyst mediates enantioselective protonation to reconstitute a stereogenic C−H bond. The efficiency of deracemization is determined by the enantiofacial differentiation effect during the stereocentre‐forming step.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.