Abstract

Atropisomeric biaryls have found crucial applications in versatile chiral catalysts as well as in ligands for transition metals. Herein, we have developed an efficient crystallization-induced deracemization (CID) method to access chiral biaryls from their racemates with a chiral ammonium salt under copper catalysis including BINOL, NOBIN, and BINAM derivatives. After being significantly accelerated by its bidentate diamine ligand, the copper catalyst exhibits high efficiency and selectivity in racemizing biaryl skeletons, and the cocrystal complex would be enantioselectively formed together with chiral ammonium salt, which on acid-quenching would directly deliver chiral biaryl without further chromatographic purification. This CID process is easily scalable, and the chiral ammonium salt was nicely recoverable. Ligand effect studies showed that bulky alkyl substitution was an indispensable element to ensure efficient racemization, which probably proceeds via a radical-cation intermediate and further allows axial rotation by forming a delocalized radical.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.