Abstract

Removal of purine bases from phi X174 single-stranded DNA leads to increased reversion frequency of amber mutations when this DNA is copied in vitro with purified DNA polymerases. This depurination-induced mutagenesis is observed at three different genetic loci and with several different purified enzymes, including Escherichia coli DNA polymerases I and III, avian myeloblastosis virus DNA polymerase, and eukaryotic DNA polymerases alpha, beta, and gamma. The extent of mutagenesis correlates with the estimated frequency of bypass of the lesion and is greatest with inherently inaccurate DNA polymerases which lack proofreading capacity. With E. coli DNA polymerase I, conditions which diminish proofreading result in a 3-5-fold increase in depurination-induced mutagenesis, suggesting a role for proofreading in determining the frequency of bypass of apurinic sites. The addition of E. coli single-stranded DNA-binding protein to polymerase I catalyzed reactions with depurinated DNA had no effect on the extent of mutagenesis. Analysis of wild-type revertants produced during in vitro DNA synthesis by polymerase I or avian myeloblastosis virus DNA polymerase on depurinated phi X174 amber 3 DNA indicates a preference for insertion of dAMP opposite the putative apurinic site at position 587. These results are discussed in relation both to the mutagenic potential of apurinic sites in higher organisms and to studies on error-prone DNA synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.