Abstract

We have achieved atomic-resolution imaging of single dopant atoms buried inside a crystal, a key goal for microelectronic device characterization, in Sb-doped Si using annular dark-field scanning transmission electron microscopy. In an amorphous material, the dopant signal is largely independent of depth, but in a crystal, channeling of the electron probe causes the image intensity of the atomic columns to vary with the depths of the dopants in each column. We can determine the average dopant concentration in small volumes, and, at low concentrations, the depth in a column of a single dopant. Dopant atoms can also serve as tags for experimental measurements of probe spreading and channeling. Both effects remain crucial even with spherical aberration correction of the probe. Parameters are given for a corrected Bloch-wave model that qualitatively describes the channeling at thicknesses 20 nm, but does not account for probe spreading at larger thicknesses. In thick samples, column-to-column coupling of the probe can make a dopant atom appear in the image in a different atom column than its physical position.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call