Abstract
In the primate visual system, form (shape, location) and color information are processed in separate but interacting pathways. Recent access to high-resolution neuroimaging has facilitated the exploration of the structure of these pathways at the mesoscopic level in the human visual cortex. We used 7T fMRI to observe selective activation of the primary visual cortex to chromatic versus achromatic stimuli in five participants across two scanning sessions. Achromatic checkerboards with low spatial frequency and high temporal frequency targeted the color-insensitive magnocellular pathway. Chromatic checkerboards with higher spatial frequency and low temporal frequency targeted the color-selective parvocellular pathway. This work resulted in three main findings. First, responses driven by chromatic stimuli had a laminar profile biased towards superficial layers of V1, as compared to responses driven by achromatic stimuli. Second, we found stronger preference for chromatic stimuli in parafoveal V1 compared with peripheral V1. Finally, we found alternating, stimulus-selective bands stemming from the V1 border into V2 and V3. Similar alternating patterns have been previously found in both NHP and human extrastriate cortex. Together, our findings confirm the utility of fMRI for revealing details of mesoscopic neural architecture in human cortex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.