Abstract
Biological consumption is a major sink for dimethylsulfide (DMS) in the surface ocean, but the fate of DMS is poorly known. We determined the fate of sulfur from biologically consumed DMS in samples from the upper 60 m of the Sargasso Sea during July 2004. Using tracer levels of 35S-DMS in dark incubations we found that DMS was transformed into three identifiable non-volatile, sulfur-containing product pools: dimethylsulfoxide (DMSO), sulfate, and particle-associated macromolecules. Together, DMSO and sulfate accounted for most (81–93%) of the non-volatile sulfur products. Only a small fraction (∼ 2%) of the consumed DMS-sulfur was recovered in cellular macromolecules, leaving 5–17% of the metabolic products of DMS consumption unidentified. The relative importance of the two major products varied with depth. DMSO was the main sulfur product (∼ 72%) from DMS metabolism in the surface mixed layer, whereas sulfate was the most important product (∼ 74%) below the mixed layer. Changes in temperature and photosynthetically-active radiation (PAR) did not cause shifts in DMS fate in short term incubations (7–12 h), however these or other factors (e.g., exposure to ultraviolet radiation), operating over longer time scales, could potentially influence the observed pattern of DMS fate with depth. Biological DMSO production rates ranged from 0.07 to 0.33 nM day − 1 , with the highest rate found at 30 m, just below the surface mixed layer. With DMSO concentrations ranging from 4.0 to 8.6 nM, turnover times for DMSO were long (15–61 days) when only the biological production from DMS was considered. Identification of the main sulfur containing products from DMS metabolism improves understanding of this important process in the marine sulfur cycling. Detection and quantification of DMSO production from biological DMS consumption also provides a more complete picture of DMSO biogeochemistry in the ocean.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.